The size Ramsey number of a directed path

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The size Ramsey number of a directed path

Given a graph H, the size Ramsey number re(H, q) is the minimal number m for which there is a graph G with m edges such that every q-coloring of G contains a monochromatic copy of H. We study the size Ramsey number of the directed path of length n in oriented graphs, where no antiparallel edges are allowed. We give nearly tight bounds for every fixed number of colors, showing that for every q ≥...

متن کامل

Stability of the path-path Ramsey number

Here we prove a stability version of a Ramsey-type Theorem for paths. Thus in any 2-coloring of the edges of the complete graph Kn we can either find a monochromatic path substantially longer than 2n/3, or the coloring is close to the extremal coloring.

متن کامل

The Size-ramsey Number

The size-Ramsey number of a graph G is the smallest number of edges in a graph Γ with the Ramsey property for G, that is, with the property that any colouring of the edges of Γ with two colours (say) contains a monochromatic copy of G. The study of size-Ramsey numbers was proposed by Erdős, Faudree, Rousseau, and Schelp in 1978, when they investigated the size-Ramsey number of certain classes o...

متن کامل

The Size Ramsey Number

Let i2 denote the class of all graphs G which satisfy G-(Gl, GE). As a way of measuring r inimality for members of P, we define the Size Ramsey number ; We then investigate various questions concerned with the asymptotic behaviour of r .

متن کامل

The vertex size-Ramsey number

In this paper, we study an analogue of size-Ramsey numbers for vertex colorings. For a given number of colors r and a graph G the vertex size-Ramsey number of G, denoted by R̂v(G, r), is the least number of edges in a graph H with the property that any r-coloring of the vertices of H yields a monochromatic copy of G. We observe that Ωr(∆n) = R̂v(G, r) = Or(n ) for any G of order n and maximum deg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2012

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2011.10.002